[/kode]
library(dplyr)
library(sf)
library(ggplot2)
library(tidyr)
library(reactable)
library(lubridate)
library(leaflet)
library(leaflet.extras)
4. syyskuuta 2022
In the Part 1 I demonstrated how to obtain the data from the tracking service, and in this part I will analyse route choices between control points.
In order to create the leaderboards, we first need the locations of the control points. These are sourced manually from the tracking service, and are formed into a spatial data below.
cps <- structure(list(cp = c("Start", "CP1", "CP2", "CP3", "CP4",
"Finish"), loc = c(" Muur-Kapelmuur, Geraardsbergen, Belgium",
" Krupka, Czech Republic", " Passo di Gavia, Italy", "Durmitor National Park, Montenegro",
" Drumul Strategic Transalpina, Romania", " Burgas, Bulgaria"
), geom = structure(list(structure(c(3.88277, 50.77159), class = c("XY",
"POINT", "sfg")), structure(c(13.856462, 50.706776), class = c("XY",
"POINT", "sfg")), structure(c(10.491406, 46.412645), class = c("XY",
"POINT", "sfg")), structure(c(18.84155, 43.153476), class = c("XY",
"POINT", "sfg")), structure(c(23.636142, 45.434891), class = c("XY",
"POINT", "sfg")), structure(c(27.53645, 42.56094), class = c("XY",
"POINT", "sfg"))), n_empty = 0L, crs = structure(list(input = "+proj=longlat +datum=WGS84",
wkt = "GEOGCRS[\"unknown\",\n DATUM[\"World Geodetic System 1984\",\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]],\n ID[\"EPSG\",6326]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8901]],\n CS[ellipsoidal,2],\n AXIS[\"longitude\",east,\n ORDER[1],\n ANGLEUNIT[\"degree\",0.0174532925199433,\n ID[\"EPSG\",9122]]],\n AXIS[\"latitude\",north,\n ORDER[2],\n ANGLEUNIT[\"degree\",0.0174532925199433,\n ID[\"EPSG\",9122]]]]"), class = "crs"), class = c("sfc_POINT",
"sfc"), precision = 0, bbox = structure(c(xmin = 3.88277, ymin = 42.56094,
xmax = 27.53645, ymax = 50.77159), class = "bbox"))), row.names = c(NA,
6L), sf_column = "geom", agr = structure(c(cp = NA_integer_,
loc = NA_integer_), class = "factor", levels = c("constant",
"aggregate", "identity")), class = c("sf", "tbl_df", "tbl", "data.frame"
))
In order to find out the positions at each control point, I will create a 5 km buffer around each point, and claim the rider first crossing the buffer the leader. Because of this method, the times and time differences may differ from the one observed in place.
start_time <- as.POSIXct("2022-07-24 22:00:00", tz = "CEST")
cps_buff <- sf::st_buffer(cps, dist = 5000)
cpoints <- unique(cps$cp)
cpoints <- cpoints[cpoints != "Start"]
lst <- list()
for (i in seq(cpoints)){
lst[[i]] <- dat_all_points %>%
st_intersection(cps_buff %>% filter(cp == cpoints[i])) %>%
st_drop_geometry() %>%
group_by(riderName) %>%
filter(time == min(time))
}
leaderdata <- do.call("bind_rows", lst) %>%
filter(!grepl("Car", riderName)) %>%
select(time,riderName,teamNumber,cp) %>%
group_by(cp) %>%
arrange(time) %>%
mutate(position = 1:n()) %>%
select(cp,position,riderName,time,teamNumber) %>%
# compute the time difference from start
mutate(behind = difftime(time, min(time), units = "secs"),
behind = seconds_to_period(behind),
behind = sprintf('%01dd %02d:%02d', behind@day, behind@hour, minute(behind)),
race_time = difftime(time, start_time, units = "secs"),
race_time = seconds_to_period(race_time),
race_time = sprintf('%02dd %02d:%02d', race_time@day, race_time@hour, minute(race_time)))
Leaderboard at CP1
Leaderboard at CP2
Leaderboard at CP3
Leaderboard at CP4
leaderdata_leg <- do.call("bind_rows", lst) %>%
filter(!grepl("Car", riderName)) %>%
filter(data_quality == "good") %>%
select(time,riderName,teamNumber,cp) %>%
# filter(grepl("Kainu", riderName)) %>%
arrange(cp) %>%
group_by(riderName) %>%
mutate(split_time = difftime(time, lag(time), units = "secs"),
split_time = seconds_to_period(split_time)) %>%
filter(!is.na(split_time)) %>%
mutate(leg = case_when(
cp == "CP2" ~ "2. CP1 to CP2",
cp == "CP3" ~ "3. CP2 to CP3",
cp == "CP4" ~ "4. CP3 to CP4",
cp == "Finish" ~ "5. CP4 to Finish"
)) %>%
ungroup() %>%
filter(!is.na(leg), split_time > 0) %>%
# filter(split_time == min(split_time))
# arrange(split_time)
group_by(leg) %>%
# filter(leg == "CP1 to CP2") %>%
# summarise(split_time = min(split_time))
arrange(split_time) %>%
mutate(position = 1:n(),
behind = split_time - split_time[1]
) %>%
select(leg,position,riderName,teamNumber,split_time,behind) %>%
mutate(
split_time = sprintf('%01dd %02d:%02d', split_time@day, split_time@hour, minute(split_time)),
behind = sprintf('%01dd %02d:%02d', behind@day, behind@hour, minute(behind))
) %>%
ungroup() %>%
arrange(leg,position)
# reactable::reactable(leaderdata_leg %>% filter(grepl("^2.", leg)),
# filterable = TRUE)
Route choices are split into legs by control points, and analyzed by each leg. Route choices are analyzed based on speed, distance and elevation gain.
ld <- leaderdata %>%
ungroup() %>%
distinct(riderName,teamNumber,cp,time) %>%
pivot_wider(names_from = cp, values_from = time)
# dat_all_points_fin <- dat_all_points %>%
# filter(grepl("Finland", country))
dat_all_points %>%
filter(data_quality == "good",
scratched == 0) %>%
left_join(ld) %>%
mutate(leg = case_when(
time < CP1 ~ "1. Start to CP1",
time >= CP1 & time < CP2 ~ "2. CP1 to CP2",
time >= CP2 & time < CP3 ~ "3. CP2 to CP3",
time >= CP3 & time < CP4 ~ "4. CP3 to CP4",
time >= CP4 ~ "5. CP4 to Finish"
)) -> dat_all_points_leg
dat_all_routes2 <- dat_all_points_leg %>%
filter(!is.na(leg)) %>%
group_by(riderName,leg) %>%
summarize(m = mean(row_number()),
leg = leg[1],
country = country[1],
groupHeaderLabel = groupHeaderLabel[1],
movingTimePercentage = movingTimePercentage[1],
totalDistance = max(totalDistance),
finishTime = min(finishTime),
do_union=FALSE) %>%
st_cast("MULTILINESTRING") %>%
ungroup()
leaderdata_leg_total <- bind_rows(
leaderdata_leg,
# add start to CP1
leaderdata %>%
ungroup() %>%
filter(cp == "CP1") %>%
select(position, riderName,teamNumber,race_time,behind) %>%
rename(split_time = race_time) %>%
mutate(leg = "1. Start to CP1")
)
dat_all_routes_leg <- left_join(dat_all_routes2,
leaderdata_leg_total) %>%
mutate(lab = paste0(stringr::str_pad(position, width = 2, pad = 0), ". ", stringr::word(riderName)))
legs <- sort(unique(dat_all_routes_leg$leg))
# lst <- list()
# for(i in seq(legs)){
# p <- ggplot(dat_all_routes_leg %>%
# filter(leg == legs[i],
# position %in% 1:9
# ),
# aes(color = lab)) +
# geom_sf(alpha = .8) +
# scale_color_viridis_d() +
# labs(title = legs[i], color = NULL) +
# theme(panel.grid.major = element_blank(),
# panel.grid.minor = element_blank(),
# axis.text.x = element_blank(),
# axis.text.y = element_blank())
# # if (i != 1) p <- p + theme(legend.position = "none")
# lst[[i]] <- p
# }
# patchwork::wrap_plots(lst, ncol = 1)
ddat <- dat_all_linestring %>%
filter(grepl("Mäkipää|Marin", riderName))
ddat2 <- dat_all_points %>%
filter(grepl("Mäkipää|Marin", riderName))
create_leaflet_fastest <- function(legi = 1){
ddat <- dat_all_routes_leg %>%
filter(leg == legs[legi],
position %in% 1:10
)
pal <- leaflet::colorFactor(palette = "Set1", domain = ddat$riderName)
labels <- sprintf(
"%s<br/>%s behind",
ddat$riderName, ddat$behind
) %>% lapply(htmltools::HTML)
leaflet(ddat) %>%
addProviderTiles(provider = providers$OpenTopoMap, options = providerTileOptions(opacity = .4)) %>%
addPolylines(color = ~pal(riderName),
# label = labels,
# labelOptions = labelOptions(noHide = FALSE,
# style = list("font-family" = "Lato",
# "font-size" = "1.0em",
# "line-height" = "1",
# "font-weight" = "700",
# "background-color" = "rgba(0,0,0,0)",
# "border-color" = "rgba(0,0,0,0)"))
) %>%
addLegend(pal = pal,
values = ~riderName, opacity = 0.7, title = "riderName",
position = "bottomright") %>%
addCircleMarkers(data = ddat2,color = ~pal(riderName)) %>%
addFullscreenControl()
}