jukola_mod <-  jukola %>%    
   mutate_at (., .vars =  vars (tsecs,legnro,tsecs1,cn,cc), .funs =  as.integer) %>%   
   mutate (name =  paste (teamname,teamnro)) 
 
 
 jukola_mod %>%  
   filter (cc ==  444 , legnro ==  7 ) %>%   
   arrange (tsecs) %>%   
   select (teamid,name) %>%   
   slice (1 : 10 ) ->  top10 
 
 jukola_mod %>%  
   filter (cc ==  444 ,  
          ! teamid %in%  c (601 ,1409 ,1654 ,172 ,26 ) 
          # teamid %in% c(1)  
          ) ->  tmp 
 
 
# korjataan Kratov  
bind_rows (tmp, 
           jukola_mod %>%  filter (grepl ("Kratov" , nm)) %>%  .[1 ,] 
           ) %>%   
# luokittele osuuksisttain  
   group_by (name) %>%  
   arrange (legnro) %>%   
   mutate (vaihtoaika_kumu =  cumsum (tsecs1)) %>%   
   ungroup () %>%   
   group_by (legnro) %>%  
   arrange (vaihtoaika_kumu) %>%   
   mutate (place =  1 : n (), 
          min_vaihtoaika_kumu =  min (vaihtoaika_kumu, na.rm =  TRUE ), 
          diff_secs =  vaihtoaika_kumu -  min_vaihtoaika_kumu) %>%   
   select (teamid, name, nm, legnro, place, placement,diff_secs,tsecs,tsecs1,vaihtoaika_kumu,min_vaihtoaika_kumu) %>%   
   ungroup () %>%   
   arrange (legnro,place) %>%   
   rename (leg =  legnro, 
          club =  name)->  dat 
 
 leg_info <-    tibble (leg =  1 : 7 ) %>%   
   mutate (length =  case_when ( 
     leg ==  1  ~  10.7 , 
     leg ==  2  ~  10.4 , 
     leg ==  3  ~  13.1 , 
     leg ==  4  ~  7.2 , 
     leg ==  5  ~  7.7 , 
     leg ==  6  ~  11.0 , 
     leg ==  7  ~  12.8  
   ),  
   length_cum =  cumsum (length)) ->  leg_info 
 
 dat2 <-  left_join (dat,leg_info) 
 
 d_leg_0 <-  dat2 %>%  filter (leg ==  1 ) %>%  mutate (length_cum =  0 ,  
                                                 diff_secs =  0 , 
                                                 leg =  0 ) 
 d_leg_11 <-  bind_rows (d_leg_0,dat2) 
 
 all_legs <-  d_leg_11 # for excel  
 
 d_leg_111 <-  d_leg_11 %>%  filter (teamid %in%  top10$ teamid) 
 
 
 
 ipsum_palette <-  c ("#d18975" , "#8fd175" , "#3f2d54" , "#75b8d1" , "#2d543d" , "#c9d175" , "#d1ab75" , "#d175b8" , "#758bd1" ) 
 
 
library (ggplot2) 
library (hrbrthemes) 
library (viridis) 
ggplot (d_leg_111, aes (x =  length_cum, y =  diff_secs/ 60 , color =  club, fill =  club)) +   
   geom_line (alpha =  .8 ) +  geom_point (shape =  21 , color =  "white" , alpha =  .8 , size =  4 ) +   
   scale_x_continuous (breaks =  leg_info$ length_cum , labels =  leg_info$ leg) +   
   scale_y_reverse () +  
   geom_text (aes (label =  place), color =  "white" , family =  "Roboto Condensed" , size =  2.5 , fontface=  "bold" ) +  
   theme_ipsum_rc () +   
   ggrepel:: geom_text_repel (data =  d_leg_111 %>%  filter (leg ==  max (leg)), aes (label =  club), nudge_y =  - .2 , size =  2.7 , family =  "Roboto Condensed" ) +   
   theme (legend.position =  "none" ) +   
   # scale_fill_ipsum() + scale_color_ipsum() +  
   scale_fill_manual (values =  c (rev (ipsum_palette),"black" )) +  scale_color_manual (values =  c (rev (ipsum_palette),"black" )) +  
   labs (title =  "10 parasta joukkuetta Jukolan viestissä 2019" , 
        subtitle =  "Ero kärkeen vaihdoissa" , 
        caption =  paste0 ("Data: http://online.jukola.com/tulokset/results_j2019_ju.xml \n " ,Sys.time ()), 
        x =  "osuus" , y =  "minuuttia kärjestä" )